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Total synthesis of sphingofungin E
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Abstract—Total synthesis of sphingofungin E (1) using an already known D-glucose derivative as a chiral synthon is described.

© 2001 Elsevier Science Ltd. All rights reserved.

Sphingofungins have been isolated by the Merck group
as new antifungal agents.!> These compounds have a
unique mechanism in their biological activity. They
inhibit serinepalmitoyl transferase, an enzyme essential
in the biosynthesis of sphingolipids.'®* The sphingofun-
gins have four consecutive chiral centers and a trans
olefinic group in their polar head moiety. In particular,
sphingofungin E (1) and F contain a quaternary center
at the C2 position. Their structures, especially the struc-
ture of sphingofungin E, are strikingly similar to myri-
ocin which has been reported as a potent
immunosuppressive agent.> Many organic chemists
have been interested in the structure of myriocin and its
unique biological activity, and myriocin and its related
compounds have already been successfully synthesized.*
The total synthesis of sphingofungin E by Trost et al.
based on the procedure of sphingofungin F synthesis
has also been achieved.® Here we describe an alternative
method for the synthesis of sphingofungin E using an
already-identified D-glucose derivative.
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Based on the retrosynthetic analysis depicted in Fig. 1,
the molecule of 1 is divided into two fragments. We
adopted the reported method®®> for coupling the
hydrophilic polar head 17 and the lipophilic side chain
18.2¢ Compound 17 possesses four contiguous chiral
centers and one trans olefin. The C1-C7 fragment of 17
should be able to be derived from the azide derivative
7, which may be obtainable® from the already-identified
D-glucose derivative 2.

We attempted to synthesize the polar head of 17 start-
ing from the benzylidene compound 2, which was easily
prepared by a modification of the procedure reported
by Fukase et al.” (Scheme 1).

Swern oxidation of 2 afforded ketone 3 as a crystalline
solid (mp 77-79°C) in 76% yield. Addition of
dichloromethyllithium to the ketone moiety of 3
afforded C2-dichloromethylated tertiary alcohol 4,
exclusively, in 70% yield without detection of the C2-
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Figure 1. Structure and retrosynthetic analysis of sphingofungin E.
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Scheme 1. Reagents and conditions: (a) Swern oxidation, —78°C, 1 h; (b) LiCHCI,, THF, —78°C, 30 min; (c) DBU, DMSO, 0°C,
3 h; (d) NaNj, cat. 15-crown-5, HMPA, 70°C, 17 h; (e) NaBH,, MeOH, 0°C, 1.5 h; (f) TBDPSCI, imidazole, DMF, 60°C, 3 h;
(g) cat. CSA, MeOH, rt, 26 h; (h) TBSCl, imidazole, DMF, 0°C, 2 h; (i) PMBCI, NaH, DMF, -23°C, 5 h; (j)
[Ir(COD)(PMePh,),|PF,, THF, rt, 2.5 h; (k) NBS, H,O, THF, 0°C, 2 h; (1) Dess—Martin periodinane, CH,Cl,, rt, 2 h; (m)
H,NMe, MeOH, rt, 1.5 h; (n) Swern oxidation, —78°C, 1 h; (o) L-Selectride, THF, —78°C, 30 min; (p) SEMCI, EtN(iPr),, DCE,
60°C, 4 h; (q) Mel, NaH, DMF, 0°C, 1.5 h; (r) DDQ, H,0, CH,Cl,, 0°C, 3 h; (s) PPTS, toluene, 70°C, 24 h; (t) NaBrO,,

NaHSO;,
rt, 13 h.

epimer, due to the steric hindrance by the anomeric
axial allyloxy group. Treatment of a solution of 4 in
DMSO with DBU gave an epoxy-chloride, which was
then treated with NaN; in the presence of 15-crown-5
using HMPA as a solvent to give an azidoaldehyde
with an accompanying inversion of configuration.® The
attack of the azide anion was regiospecific at the C2
carbon. The aldehyde was immediately reduced with
NaBH, to afford primary alcohol 5 in 84% yield in
three steps. Protection of the primary hydroxyl group
of 5 with ¢-butyldiphenylsilyl chloride (TBDPSCI) and
imidazole using DMF as a solvent, and successive
deprotection of the 4,6-O-benzylidene group with CSA
afforded diol 6 in 86% yield. The regioselective silyla-
tion at the C6 hydroxyl group of 6 with ¢-butyl-
methylsilyl chloride (TBDMSCI) and imidazole, and
the p-methoxybenzyl (PMB) ether formation at the C4
hydroxyl group with PMBCI and NaH in DMF at
—23°C for 5 h afforded 7 in 64% yield. The deprotection
of the C1 anomeric O-allyl with an Ir complex® and
NBS-H,O0 gave pyranose 8 in 82% yield. Compound 8
was oxidized to a lactone using Dess—Martin periodi-
nane, and was successively treated with methylamine in
MeOH to afford stable amide 9 in 94% yield. Since the
configuration of the C5 hydroxyl group of 9 was the
reverse of that of the natural sphingofungin E, we

H,O, AcOEt, rt, 1 h; (u) Pd/C, H,, AcOEt, rt, 14 h; (v) PhCOCIL, Et;N, CH,Cl,, rt, 2 h; (w) 5% aq. H,SO,, acetone,

needed to inverse the configuration from R to S. Com-
pound 9 was oxidized by Swern oxidation to give a
ketone, which was then reduced to alcohol 10 by L-
Selectride reduction. This hydride reduction was
achieved in a >95:<5 ratio diastercoselectively. After the
purification by silica gel column chromatography, an
inverted alcohol 10 was obtained in 82% yield in two
steps. The C5 hydroxyl group of 10 was protected by
treatment with (trimethylsilylethoxy)methyl chloride
(SEMCI) and diisopropylethylamine in dichloroethane
to give SEM ether 11 in 85% yield.

Based on our preliminary experiment, difficulties were
expected in hydrolyzing the C1 N-methylamide group
to a carboxylic acid after introducing the lipophilic side
chain. Thus, we carried out the cleavage of the amide
bond via the formation of a five-membered lactone by
the removal of C4 PMB ether. Treatment of 11 with
Mel in the presence of NaH as a base in DMF afforded
N-dimethylamide 12 in quantitative yield. Treatment of
the resulting compound 12 with DDQ-H,O to remove
the p-methoxybenzyl group followed by PPTS gave
lactone 13 in 62% yield. The pre-conversion to dimethyl-
amide 12 was essential to achieve lactone formation
under these moderately acidic conditions.’
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Scheme 2. Reagents and conditions: (a) Dess—Martin periodinate, CH,Cl,, rt, 1.5 h; (b) CHI;, CrCl,, THF, rt, 2 h; (c)
organoborane 18, PdCl,(dppf), Ph;As, Cs,CO;, THF-DMF, rt, 2 h; (d) 5% aq. H,SO,, acetone, rt, 5 h; (¢) HF—Py complex, THF,
rt, 5.5 h; (f) NaOH, H,O, dioxane, 70°C, 7.5 h, then neutralized with Amberlite IR-120.

Based on the preliminary experiment, difficulties were
expected in the deprotection of the C3 O-benzyl group
in the final stage. Therefore, we removed the benzyl
group at this stage. However, applying hydrogenolytic
conditions using Pd/C as a catalyst or other methods!'®
to cleave the benzyl group proved fruitless. Finally,
treatment of 13 with NaBrO; and NaHSO; gave 14 in
61% yield.!! After the reduction of the azide group of
14 under hydrogen using Pd on carbon as a catalyst in
ethyl acetate, the following treatment with 3 equivalents
of benzoyl chloride and excess triethylamine afforded
the O-benzoylated benzoylamide 15 in 80% yield. Selec-
tive cleavage of the C6 O-TBS group of 15 by treat-
ment with 5% aqueous H,SO, in acetone was
accomplished to give alcohol 16 in 87% yield without
cleavage of both the TBDPS and SEM groups.

The following steps to introduce the lipophilic side
chain with an E-geometrical alkene part to compound
16 were achieved by applying the reported method?->
(Scheme 2).

Thus, Dess—Martin periodinate oxidation of the C6
hydroxyl group of 16 to an aldehyde, followed by iodo
olefination of the resulting aldehyde, exclusively
afforded (E)-iodoolefin 17 in 69% yield without any
detection of the (Z)-isomer. Suzuki coupling'? of vinyl
iodide 17 and organoborane 18 using PdClL(dppf),
Ph;As and Cs,CO; in THF-DMF provided the desired
(E)-alkene 19 in 81% yield. The deprotection reactions
to convert 19 to 1 were carried out as follows. The C14
ethylene acetal of 19 was removed by hydrolysis with
5% aqueous H,SO, in acetone. Treatment of the
obtained ketone with a HF—pyridine complex in THF
cleaved both TBDPS and SEM ethers to give keto diol
20 in 63% yield. Finally, the lactone ring, benzamide
and benzoyl ester groups of 20 were saponified in the
presence of NaOH in dioxane-H,O, and neutralization
with Amberlite IR-120 ion-exchange resin afforded sph-
ingofungin E (1)!* in 88% yield.

Thus, we were able to accomplish the synthesis of
sphingofungin E from the already-identified D-glucose
derivative 2 in a stereocontrolled manner in 29 steps in
1.1% overall yield.
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The melting point, optical rotatory value, and spectral
data of the synthetic compound agreed closely with those
of both natural and synthetic sphingofungin E reported
by the Merck group'® and Trost,> respectively. Mp 145
147°C. [a]3 -5.43 (c 0.48, CH,OH). IR (KBr) 3532,
3198, 2928, 2855, 1711, 1637 cm~'. "TH NMR (500 MHz,
CD;0D) ¢ 0.90 (t, 3H, J=6.8 Hz), 1.24-1.46 (m, 12H),
1.50-1.56 (m, 4H), 2.06 (q, 2H, J=6.8 Hz), 2.44 (t, 2H,
J=17.3 Hz), 2.45 (t, 2H, J=7.3 Hz), 3.64 (d, 1H, J=6.9
Hz), 3.85 (d, 1H, J=11.7 Hz), 3.94-4.00 (m, 2H, involv-
ing a doublet at ¢ 3.98, J=11.7 Hz), 4.11 (t, 1H, J=7.3
Hz), 5.45 (dd, 1H, J=7.8 Hz, 15.6 Hz), 5.77 (dt, 1H,
J=15.6 Hz, 6.8 Hz). 3C NMR (125 MHz, CD,0D)
14.37, 23.58, 24.84, 24.86, 29.99, 30.01, 30.14, 30.16,
32.81, 33.42, 43.45, 43.48, 64.95, 70.03, 71.11, 75.52,
76.27, 130.14, 135.70, 173.42, 214.34. HRMS (FAB, posi-
tive) caled for C,,H,NO, (M+H)*: 418.2805. Found:
418.2806.



